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Two-dimensional (2D) CuO2 planes play a key role in high-Tc cuprates. In the present study, ultrathin 

(1-20 uc) tetragonal SrCuO2 (SCO) films were successfully layer-by-layer grown on TiO2-terminated 

SrTiO3 substrates using pulsed-laser-deposition technique. The structure of SrCuO2 ultrathin films can 

be controlled. The thickness-dependent structural transformation of the SrCuO2 fil ms was studied by 

polarized x-ray absorption spectroscopy (XAS) at the Cu L-edge, and synchrotron-based x-ray 

diffraction and Laue diffraction. With the fabrication technology available, we demonstrate a new 

concept on inducing a 2D metallic phase in the SrCuO2/SrTiO3 structure via the oxygen sublattice and 

interface engineering. The electrical transport properties of this new state are studied by the electrical 

and Hall measurements. 
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Localizing and enhancing light at the nanoscale, plasmonics has been one of the hottest topics in the 

field of nanophotonics [1,2]. Gold and silver are the predominant choice of metal for plasmonics in 

visible and near-infrared wavelength region, however in the deep UV (DUV) region, these metals 

behave as absorptive dielectrics but not as metals. Therefore, no much attention has been paid to UV 

and DUV in plasmonics research. However, we found DUV is attractive in views of nano-imaging, 

spectroscopy, and industry applications. 

In this presentation, I will discuss plasmonics in DUV from principles, materials and applications. 

We found that aluminum and indium are promising materials as plasmonic metals in DUV [3ï5]. We 

have experimentally demonstrated that aluminum nanoparticles with a diameter of 50 nm exhibit 

localized plasmon resonance at a wavelength of 270 nm in DUV [4]. We applied an aluminum 

nanoparticle array to enhance photocatalytic activity of TiO2 having a bandgap energy in UV [6]. We 

also fabricated plasmonic metal tip with aluminum nanoparticles attached to the apex and applied it to 

plasmonic tip-enhancement of resonance Raman scattering of adenine molecules excited with a 

wavelength of 266 nm [3]. We showed that metal grains on plasmonic tip act as an optical nano-antenna 

for high enhancement [7]. We developed a reflection objective that is compatible with DUV light with 

an N.A. as high as 0.9 [8]. 
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We study the fabrication and characterization of different polymer-related nanomaterials by wetting 

porous templates. The templates we choose are anodic aluminum oxide (AAO) templates because of 

the regular pore distribution, high pore density, and high aspect ratio of the pores. Different 

nanomaterials such as amorphous carbon nanotubes, amphiphilic block copolymer nanostructures, and 

porous inorganic materials are fabricated by using these templates. We also investigate the morphology 

transitions of polystyrene-block-polydimethylsiloxane (PS-b-PDMS) nanorods confined in the 

nanopores of AAO templates. The nanorods are formed by solvent-assisted template wetting, and the 

morphologies are compared to those in the bulk state. By blending PS-b-PDMS with homopolystyrene 

(hPS), the morphologies of the nanorods can be controlled because of the changes of the effective 

volume fractions. PS-b-PDMS micelle solutions are also used to prepare micelle nanostructures, and 

the critical parameters affecting the morphologies are determined. Micelle nanorods, micelle 

nanospheres, and multi-components nanopeapods can be prepared by wetting AAO templates with the 

micelle solutions. Rayleigh-instability-

driven transformation is discovered to 

play an important role in controlling 

the morphologies of the micelle 

nanostructures. Zwitterionic polymer-

grafted AAO templates are also 

prepared by surface-initiated atom 

transfer radical polymerization (SI-

ATRP) and the geometric effect on the 

polymer chain growth in the confined 

nanopores are investigated. 
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Previously, we have demonstrated a localized surface plasmon resonance (LSPR)-induced water 

splitting system that operated under irradiation by visible light; the system was based on the excitation 

of plasmonic photoanode whose surface was loaded with gold nanoparticles (Au-NPs).1-3 According to 

a similar method of the water splitting system, we have also successfully constructed the artificial 

photosynthesis system that produced the ammonia by a photofixation of a nitrogen molecule based on 

visible light irradiation.4, 5 However, the reaction efficiency in the plasmon-induced artificial 

photosynthesis is still low.  

In this study, we employed two approaches to improve efficiency. First, we reconstructed the 

photosynthetic device to enhance the ion and electron transport path. Furthermore, we investigated a 

quantitative evaluation of the plasmon-induced ammonia synthesis, such as bias effect, pH effect, 

stoichiometry, and intermediate. Based on these results, we propose the plasmon-induced NH3 synthesis 

on Zr proceeds via an associative pathway in which N2 is hydrogenated by protons.6  

Second, the LSPR mode was coupled with the other optical mode.7-9 We found that a Au-NPs/TiO2-

film/Au-film (ATA) photoanode with a modal strong coupling between the FabryïPérot nanocavity 

mode of the TiO2 thin-fi lm/Au-film and the LSPR mode of the Au-NPs extraordinarily enhanced water 

splitting efficiency as compared to that of Au-NPs/TiO2 photoanode because the modal strong coupling 

shows the large and broad absorptivity in all visible region based on the split hybrid energy state. We 

will also introduce the ammonia photosynthesis using the ATA photoanode. 
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Oxidative steam reforming of ethanol to produce hydrogen or syngas (H2/CO) is an important process 

for fuel cell applications. To achieve high conversion of ethanol and yield of hydrogen, a stable catalyst 

that is active on ethanol conversion is desired. In this presentation, I will summarize our efforts to 

develop new oxide catalysts for OSRE process. Metal substituted pyrochlores A2B2O7-d (A = 

Alkali/Alkaline Earth/Rare Earth elements; B = Ce/Ru/Ni) were synthesized and used as catalysts for 

oxidative steam reforming of ethanol. The solid solution phases were prepared via the sol-gel process. 

The substituted metal cations are active to OSRE and distributed evenly in the pyrochlore structure. The 

as-prepared samples were characterized and the influence of substituted metal cations on the activity of 

OSRE was investigated. PXRD Rietveld analysis and elemental analysis (ICP-AES) support the 

formation of a pyrochlore-type structure (space group Fd-3m) with the distorted coordination 

environment. The catalytic performances were tested with varied temperatures, metal ion contents, 

carbon-to-oxygen ratios and long-term stabilities. In general, the OSRE activity is depending on the 

active metal cations in B sites of pyrochlore structure. Under the conditions of nearly 100% ethanol 

conversion, optimized hydrogen selectivityôs are 99(1) for Ru-substituted catalyst La2Ce1.8Ru0.2O7. For 

Ni2+-substituted pyrochlore La2Ce2-xNixO7-d, performance on ethanol conversion is affected by the Ni 

content and the H2 selectivity reaches to the highest value 82.6(1) % for sample of x=0.45. Further 

studies were extended to metal substitution on A sites with alkali, alkaline earth, and rare earth elements. 

Pyrochlore phase LixLa2-xCe1.8Ru0.2O7-ŭ (x = 0.0 - 0.6) [LLCRO] substituted by Li and Ru in A and B 

sites supported by LZO exhibited average ethanol conversion and hydrogen selectivity of 90(3)% and 

71(4)%, respectively. Alkaline earth metal substitutions on the A-site of pyrochlore oxide xLa2-

xCe1.8Ru0.2O7-ŭ (M = Mg, Ca) showed optimized catalysts Mg0.3La1.7Ce1.8Ru0.2O7-ŭ and 

Ca0.2La1.8Ce1.8Ru0.2O7-ŭ with H2 selectivity 101(1)% and 91(2)% under OSRE. The substitution of 

cations in A-sites affect the oxidation states of Ce4+/3+ and Run+ ions and create oxygen vacancies. 

Catalysts supported on La2Zr2O7 showed stable OSRE/ATR performance and low carbon deposition 

compared to catalysts supported on Al2O3. We ascribe the enhanced activity to well-dispersed alkaline 

earth metal and Ru ions in a solid solution structure, synergistic effects of (Li, Mg, Ca)2+/Ce3+,4+/Run+ 

ions, and strong catalyst-support interaction that optimized the ethanol conversion and hydrogen 

production.  
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Ever since Ashkin demonstrated a single-beam gradient force optical trap (optical tweezers), it has 

played innovative roles in manipulating dielectric micro-objects without mechanical contact. In 

chemistry, this technique was applied to smaller objects, such as nanoparticles, quantum dots, polymers, 

proteins, and amino acids, confining and assembling those in the focal volume. Despite the spatio-

temporal preparation of assemblies and crystals, the potential of laser trapping technique for chemical 

reactions remains unexplored. Here, we present optically-controlled synthesis and modification of lead 

halide perovskites, which results from chemical reactions in the precursor solutions through local 

concentration increase under laser trapping. 

For the synthesis of perovskite crystals, a precursor solution prepared by dissolving MAX and 

PbX2 (MA = CH3NH3
+, X = Br & Cl) in a mixture of DMSO/DMF was placed in a handmade sample 

chamber. Figure 1a shows crystallization behavior under the laser irradiation (1.0 W) at the surface of 

a precursor solution of MAPbBr1.0Cl2.0. The crystallization was similarly induced from the focal spot in 

the unsaturated precursor solutions of other compositions, MAPbBrnCl3-n (n = 0, 0.5, 1.5, 2.0, 2.5, 3.0). 

Different from spontaneous formation of multiple crystals in saturated precursor solutions, laser 

irradiation creates one single crystal with a high chloride composition in a spatio-temporally controlled 

manner, which is through local concentration increase of precursor complexes and their de-solvation in 

optical potential.1,2 

For the site-specific modification of a perovskite crystal, a MAPbBr3.0 micro-rod was prepared 

with a chemical approach in a sample chamber, followed by the addition of a reaction solution [MAI 

(250 ɛM) in isopropyl alcohol:hexadecane (1:100, v:v)]. Figure 1b shows photoluminescence (PL) 

images before and after the laser irradiation to the center of the micro-rod. Before the irradiation, the 

whole MAPbBr3.0 micro-rod showed green emission due to its intrinsic property [panel ( ) of Fig. 1b]. 

After the irradiation, the green emission was gradually changed into first yellow and finally red [panel 

( ) of Fig. 1b]. This is due to local halide exchange reaction of MAPbBr3.0 with MAI, which leads to 

the formation of MAPb(Br·I)3.0 of a lower bandgap. Such bandgap modification was possible in 

multiple positions by shifting the laser focus after the first irradiation, which is due to local 

concentration increase in MAI under laser trapping. 

 
Figure 1. (a) Optical micrographs around the focal spot under the laser irradiation to the precursor solution 

of MAPbBr1.0Cl2.0. (b) PL images of a MAPbBr3.0 micro-rod before and after the laser irradiation. 
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On-demand spin orientation with long polarized lifetime and easily detectable signal is an ultimate goal 

for spintronics. However, there still exists a trade-off between controllability and stability of spin 

polarization, awaiting a significant breakthrough. Here, we demonstrate switchable optomagnet effects 

in (Fe1īxZnx)2Mo3O8, from which we can obtain tunable magnetization, spanning from -40% to 40% 

of a saturated magnetization that is created from zero magnetization in the antiferromagnetic state 

without magnetic fields. It is accomplishable via utilizing circularly-polarized laser pulses to excite 

spin-flip transitions in polar antiferromagnets that have no spin canting, traditionally hard to control 

without very strong magnetic fields. The spin controllability in (Fe1īxZnx)2Mo3O8 originates from its 

polar structure that breaks the crystal inversion symmetry, allowing distinct on-site d-d transitions 

for selective spin flip.  By chemical doping, we exploit the phase competition between 

antiferromagnetic and ferrimagnetic states to enhance and stabilize the optomagnet effects, which result 

in long-lived photoinduced Kerr rotations. The present study, creating switchable giant optomagnet 

effects in polar antiferromagnets, sketches a new blueprint for the function of antiferromagnetic 

spintronics. 

 

 

Fig. 1. Illustration of optomagnets created by optical helicities in a magnetic basis. Four distinct spin 

quantum states A, B, C, D can be selectively created from the zero-magnetization (M=0) state by flipping 

one of the sublattice spin moments (1,2,3,4) = (ŷŹŹŷ) with the flipped moment color coded in each unique 

configuration. This optomagnet can be made possible through the on-site d-d optical transitions with 

combinations of pump photon energies E1,2 and circularly polarized pumps ů±. Combining the resultant 

magneto-optical Kerr rotations ȹɗ, we can unambiguously discern the four distinct microscopic states that 

lead to two switchable magnetization directions macroscopically. 
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Among porous molecular crystals, those constructed through preorganized hydrogen bonding, named 

Hydrogen-bonded Organic Frameworks (HOFs), recently attract much attention as a new class of 

porous organic materials because of their high crystallinity, potential designability, regenerability, and 

facile construction process.1 HOFs, however, have been regarded as relatively fragile framework and 

their current designing strategy is still insufficient compared with other porous materials such as MOFs 

and COFs because of weakness of H-bonds. In connection with this, we have demonstrated that various 

C3-symmetric ˊ-conjugated molecules possessing o-bis(4-carboxyphenyl)aryl groups in their periphery 

successfully gave H-bonding low-density networked structures, which effectively gave stable HOFs 

with permanent porosity by activation (see Figure).2 The obtained HOFs show significant thermal 

stability over 300 °C and permanent porosity with the BrunauerïEmmettïTeller surface area values up 

to 1288 m2g 1.3 Moreover, optoelectronic properties of ˊ-conjugated systems applied for the building 

blocks enabled to provide multifunctional HOFs such as acid-responsive HOFs with permanent 

porosity.4 Our strategy for constructing functional HOFs contribute to developing a new field of porous 

organic materials.    
 

 

Figure. Formation of layered HOFs via H-bonding of C3-symmetric p-conjugated molecules. 
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A biosensor is generally defined as an analytical device, which converts the biochemical responses into 

the quantifiable electronic signals. Its extensive utilities in medical diagnosis, toxicity testing, chemical 

analysis, food industry, and many other areas for quantitative assessments has appeared. Quartz crystal 

microbalance and field-effect transistor-based devices have been demonstrated to possess exceptional 

characteristics and outstanding performance while conjugated with the advanced nanotechnology. 

However, both devices still have to face the nonspecific binding issue, which is a headache for 

researchers on all biosensor platforms. In our research, we have efficaciously reduced 95% nonspecific 

binding via immobilize the zwitterionic layer on the surface of the chip. Moreover, we integrate 

microfluidics, nanoparticles, rapid surface modification on several bio-sensing platforms to efficiently 

pretreat specimens and detect target bio-molecules. In addition, a series advanced microfluidic chips 

are designed for lymphocyte isolation, active sperm sorting, and nanoparticle synthesis. 

 

 
Fig. 1 Illustration of the setup of spiral microfluidic channels for isolating human PBL rapidly and safely. 
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We consider a minimization problem minimizing p objective functions  

depending on n state variables. Pareto set is a set of points in  at which, for any , one cannot 

decrease -th objective function without increasing any one of the other objective functions. Pareto front is 

the image of Pareto set mapped by .  In general, if p is greater than 1, the objective functions 

cannot be minimized simultaneously and thus it is important to understand structures of the Pareto set and 

front, which are the set of the best compromise solutions and their image by , respectively. 

 

Under the assumption that n is equal to or greater than p and the objective functions are smooth, the 

first order necessary condition implies that the Pareto set is a subset of singular points, where the singular 

points of a map  is the set of points at which the rank of the Jacobi matrix is less than p. We 

introduce an equivalence relation among maps and classify local geometries of Pareto set and Pareto front 

up to diffeomorphism. Below, we show the Pareto set and Pareto front of two of the equivalence classes of 

codimension 0 in case . Roughly speaking, in case , the Pareto front consists of a pieces of curves 

ending at points and the class corresponding to the left figure appears in the middle of such curves whereas 

one corresponding to the right figure appears on the edge of such curves. In this presentation, we will provide 

a comprehensive list of possible local geometries of Pareto sets and Pareto fronts for  and for the pairs 

 in the nice region [1] up to diffeomorphism [2]. 

 

              
Figure (left, right):  The image of  is indicated in yellow whereas its Pareto front is indicated in the thick 

black lines in the space . 

 

In this analysis, we have obtained a comprehensive list of local geometries of Pareto sets and Pareto 

fronts for  and for the pairs  in the nice region up to diffeomorphism. First of all, this analysis 

may be useful to understand all the possible trade-off relationships between mutually conflicting 

objectives. Second, this list may provide some insight on designing benchmark problems. 
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Alkaline earth metal substitutions on the A-site of pyrochlore oxide MxLa2-xCe1.8Ru0.2O7-ŭ (M = Mg, Ca) 

were studied as catalysts for oxidative/autothermal steam reforming of ethanol (OSRE/ATR). The as-

prepared oxides were synthesized by a combustion method and characterized using Powder X-ray 

diffraction (PXRD), X-ray photoelectron and absorption spectroscopy (XPS and XAS). PXRD Rietveld 

analysis and elemental analysis (ICP-AES) support the formation of a pyrochlore-type structure (space 

group Fd-3m) with the distorted coordination environment. The substitution of Mg2+ and Ca2+ ions 

affect the oxidation states of Ce4+/3+ and Run+ ions and create oxygen vacancies, which leads to enhanced 

catalytic activity and reduced ethylene selectivity. A long-term stability test showed optimized catalysts 

Mg0.3La1.7Ce1.8Ru0.2O7-ŭ and Ca0.2La1.8Ce1.8Ru0.2O7-ŭ with SH2 = 101(1)% and SH2 = 91(2)% under OSRE. 

The initial operation temperatures were lower than that of the unsubstituted catalyst La2Ce1.8Ru0.2O7-ŭ. 

Catalysts supported on La2Zr2O7 showed stable OSRE/ATR performance and low carbon deposition 

compared to catalysts supported on Al2O3. We ascribe the enhanced activity to well-dispersed alkaline 

earth metal and Ru ions in a solid solution structure, synergistic effects of (Mg, Ca)2+/Ce3+,4+/Run+ ions, 

and strong catalyst-support interaction that optimized the ethanol conversion and hydrogen production. 
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Polyimides (PIs) have good mechanical properties, excellent thermal stability, and good chemical 

resistance. In this work, we use anodic aluminum oxide (AAO) templates to prepare porous PI and 

carbon nanomaterials. AAO templates have regular nanochannels and the diameters and lengths of the 

nanochannels can be easily controlled. First, polyamic acid (PAA) solutions are used as precursors and 

infiltrated into the nanochannels of AAO templates, forming PAA nanotubes. Next, the PAA nanotubes 

are annealed in tetrahydrofuran (THF) and N, N-dimethylformamide (DMF) solvent vapors to fabricate 

porous PAA nanotubes; the pore lengths can be controlled by solvent vapors and annealing times. After 

the imidization processes at 300 °C, porous PI nanotubes can be obtained. Finally, the porous PI 

nanotubes can be further converted to porous carbon nanotubes by carbonization processes, which have 

potential applications in areas such as gas separation, capacitors, and energy storage devices. 

 

 
Figure 1. (a) Schematic illustration of the experimental processes. (b-d) SEM images of nonporous 

PAA, PI, and carbon nanotubes. (e-g) SEM images of porous PAA, PI, and carbon nanotubes.  

 

The experimental processes to fabricate the nonporous and porous PAA, PI, and carbon nanotubes 

are illustrated in Figure 1a. Figure 1b-d shows the SEM images of the nonporous PAA, PI, and carbon 

nanotubes. After the solvent-annealing-induced transformation process using THF vapors at 40 °C for 

24 h, porous PAA nanotubes can be observed (Figure 1e). After the imidization and carbonization 

processes, porous PI and carbon nanotubes can be formed (Figure 1f, g).  
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Traditional real-time fluorescence quantitative PCR has been recognized as a very useful and widely 

technique for amplifying and detecting target DNA and suitable for digital PCR analysis in applied to 

clinical and point-of-care testing(POCT) applications1,2. Here, we report an effective technology for 

optical quantitative PCR with passive driven microfluidic droplet-based assay. Such device is made by 

polydimethylsiloxane(PDMS) with outer channel and the reaction chamber. According to the gas 

permeability of PDMS, the microfluidic channel is covered with a waterproof layer and supporting 

layers in order to prevent water loss during the PCR heating reaction. Also, mineral oil is injected into 

the channel through the oil inlet that supplant adequate buffer out reserving PCR reagent in the reaction 

chamber. This passive assay only requires hand pipetting for the entire experimental process and 

external power system is not necessary. With designed microfluidic channel, buffer can be easily 

exchanged in the reaction chamber. Human mutant EGFR mRNA solution isolated from H1975 cell 

line is used as template to verify the accuracy of this method. Such simple, portable and self-priming 

microfluidic PCR biochip can be potentially widely used in clinical application as a real POCT 

technique. 

 

Figure. (A) Schematic diagram of the designed PCR biochip, showing different layers with different 

functions. (B) The oil cover process during the mineral oil injecting through hand pipetting. (C) the result 

and optical fluorescence image of detecting target mRNA (mutant EGFR) through passive driven 

microfluidic droplet array. 
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In this study, we synthesized new 10ï300-nm graphene nanosheetsïMnO2ïWO3 (G/MnO2/WO3) 

architectures through electrochemical induced cathodic plasma formation in one batch at low 

temperature (70 oC) for a short time (2 hours) as compared to those in a hydrothermal method. We first 

obtained 100-nm leaf-like graphene nanosheets (G), then 150-nm long and 10-nm diameter petiole-like 

MnO2 nanowires on G, and finally 280-nm petal-like WO3 on MnO2/Gðthereby forming the 

G/MnO2/WO3 architecturesðas evidenced using scanning electron microscopy and transmission 

electron microscopy. The G/MnO2/WO3 architecture has surface area of 291 m2 gï1ðmuch higher than 

that of G/MnO2 of 241 m2 gï1 and of G of 59 m2 gï1ð that provides suitable surface area for ions 

diffusion during the charging and discharging process. As a result, the electrode incorporating 

G/MnO2/WO3 architectures exhibits excellent specific capacitance of 620 F gï1ð45% and 200% higher 

than those of G/MnO2 and G electrodes (421 and 189 F gï1, respectively)ðat a current density of 0.5 

A gï1. Moreover, the G/MnO2/WO3 electrode exhibits good cycling stability with 90% capacitance 

retention over 5000 cycles at 1 A gï1. Such new G/MnO2/WO3 structures not only provide high-

performance electrode applications but also provide a potential way to obtain high surface area, 

resulting in other high-performances. 
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Surface-enhanced Raman scattering (SERS) substrates with three-dimensional porous nanostructures 

have been developed for sensitive and reproducible approaches. In this work, a novel hybrid substrate 

with a spongy-like pore system of block copolymer layer supported on self-organized nanocavity arrays 

of anodic aluminum oxide (AAO) template is prepared. Gold nanoparticles (AuNPs) with an average 

size of 13 nm are anchored on the as-prepared porous hybrid substrates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. SEM images of the underlying concaved AAO templates: (a) Top-view and (b) 45Ǔ tilt-view. SEM 

images of the porous hybrid substrates: (c) before and (d) after anchoring with AuNPs. (e) SERS spectra of 

different substrates anchored with dispersed or aggregated AuNPs. The concentration of R6G molecules 

and the size of the AuNPs are 10-4 M and 13 nm, respectively.  

 
Figure 1a and 1b show the SEM images of the AAO templates with self-organized nanocavity arrays 

fabricated by a traditional two-step anodization method. To generate a spongy-like pore system of the 

block copolymer layer, we apply the UV irradiation and the selective removal processes (Figure 1c). 

Also, the citrate-stabilized AuNPs can be anchored on the top of the porous block copolymer layer 

successfully, as shown in Figure 1d. The SERS spectra of the as-prepared substrates are displayed, and 

the bare AAO templates without a porous block copolymer layer are also shown for comparison in 

Figure 1e. The results reveal that the increase of the surface area and the generation of hot-spots 

resonance effects can strongly enhance the signal intensities. 

In conclusion, we have successfully prepared a porous hybrid SERS substrate using PS-b-PMMA 

and AAO template. In comparison with bare AAO templates and flat surfaces, our porous hybrid 

substrate shows high-intensity enhancement because of strong near-field interaction induced by 

nanostructure. The enhancement factor (EF) is ~104 and the relative standard deviation (RSD) is less 

than 10%. This work may open a new avenue for the preparation of large-area and reliable SERS 

substrates. 

  


