Imaging the mechano-chemical feedbacks in biological patterning

Fumio Motegi

Professor	
Affiliation:	Institute for Genetic Medicine, Hokkaido University,
	Sapporo, Hokkaido, 060-0815 Japan
E-mail:	motegi@igm.hokudai.ac.jp
Specialty:	Cell Biology, Developmental biology, Mechanobiology
1 2	

ABSTRACT

Cell polarity is necessary for diverse processes during development and prevents progression of cancer and ageing. A hallmark of polarized metazoan cells is the segregation of partitioning-defective (PAR) proteins into distinct compartments at the cell cortex. However, the design principle that governs local interactions among PAR proteins into global cellular patterning remains elusive. Using *Caenorhabditis elegans* zygotes as a model system, my group uncovered 1) the mechanisms underlying symmetry breaking by sperm-donated centrosome^{1,2,3,6}, and 2) how physical properties of the cell cortex ensures asymmetric segregation of PAR proteins⁴. Based on the core molecular players and interactions in zygotes, we re-constructed the pattern-forming circuits of PAR polarity network in apolar blastomeres⁷ and non-metazoan yeast cells⁵. Our findings provide the simplest network that executes self-organizing polarization, which will permit synthetic control of the cell polarity program in living organisms.

REF.

- [1] Nature Cell Biology 8, 978-985 (2006)
- [2] Development 137, 1669-1677 (2010)
- [3] Nature Cell Biology 13, 1361-1367 (2011)
- [4] Nature Cell Biology 19, 988-995 (2017)
- [5] Nature Chemical Biology 14, 917-927 (2018)
- [6] Developmental Cell 48, 631-645 (2019)
- [7] Cell Reports 36, 109326 (2021)