Structures of Carbonate-Bridged Lanthanoid Triangles Sandwiched by Lacunary Keggin Polyoxometalates

<u>Jiao Chen</u>¹, Daisuke Nishide¹, Masaru Fujibayashi^{2, 3}, Kiyonori Takahashi^{1,3}, Kazuya Kubo⁴, Shin-ichiro Noro^{1, 3} and Takayoshi Nakamura^{1, 3}

¹Grad. School of Environ. Sci., Hokkaido Univ.; ²Grad. School of Sci. and Technol. for Innov., Yamaguchi Univ.; ³RIES, Hokkaido Univ.; ⁴Grad. School of Mater. Sci., Univ. of Hyogo

1. Introduction

Polyoxometalates (POMs) which are metal–oxygen clusters with versatile structural topologies have been attracting much attention in diverse fields such as catalysis, magnetism, and biological systems.^[1] The lacunary Keggin POMs are constructed by removing a triad of MO₆ octahedra units from Keggin type POMs, and can act as ligands toward carbonate-bridged Lanthanoid triangles. In this way sandwich-type POMs can be formed with different spin topologies, and in general are reasonably well separated from one another by the bulky nonmagnetic POMs.^[2] Such Lanthanoid-containing sandwich-type POMs have the possibility to give interesting properties such as single-molecule magnet (SMM) behavior with spin frustrated topology. In this work, five kinds of sandwich-type POMs with different cations, $X_{11-n}Na_n[(PW_9O_{34})_2(H_2OTb)_3CO_3]$ (0 < n < 11; X = Na⁺ (1), methylammonium (2), dimethylammonium (3), trimethylammonium (4), tetramethylammonium (5)), were synthesized to investigate the effect of organic cations to the structure of POMs in the crystals.

2. Experimental

 $TbCl_3 \cdot 6H_2O$ was dissolved in water, and the pH was adjusted to 6.1 using a solution of Na₂CO₃. Na₈H[PW₉O₃₄] was added into the aqueous solution with stirring for 1 h at 80 °C. Insoluble material was removed by centrifugation, and counter cation was added into the solution. The colorless crystals were obtained by slow evaporation.

3. Results and discussion

The absorption bands of v_{C-N} (1415 cm⁻¹) and v_{C-O} (1470 cm⁻¹), as well as v_{P-O} (1060 cm⁻¹, 1010 cm⁻¹) and v_{W-O-W} (700 cm⁻¹ - 950 cm⁻¹) in IR spectra for crystals 2-5 indicated the presence of organic cations and the formation of sandwich-type POMs, respectively. Single crystal structural analyses revealed that the three terbium ions were bridged by carbonate ion between two lacunary Keggin POMs, forming Tb triangle in sandwich-type POMs (Fig. 1). The triangle shapes and POM arrangement were different in the crystals: the triangles in crystals 2 and 5 were equilateral with C_3 axis though the triangle plane and the sandwich-type POM anions were arranged along the c-axis (Fig. 2 (a)), whereas the triangles in crystal 1 and 4 were distorted and POM anions were not arranged in the same direction as the symmetric axis (Fig. 2 (b)).

4. References

- [1] D. Long, et al., Angew. Chem., **2010**, 49, 1736.
- [2] A. Muller, et al., Am. Chem. Soc., 1998, 239-231.

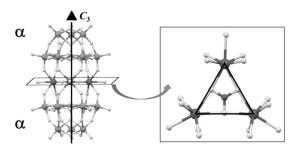


Fig. 1. The structure of the sandwich-type POM and carbonate-bridged Tb triangle in crystals 2 and crystal 5

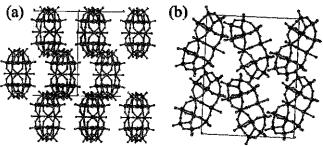


Fig. 2. The packing structures of (a) crystal 2 and (b) crystal 4.